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Abstract. Distributions following a power-law are an ubiquitous phenomenon. Methods for determining the
exponent of a power-law tail by graphical means are often used in practice but are intrinsically unreliable.
Maximum likelihood estimators for the exponent are a mathematically sound alternative to graphical
methods.

PACS. 02.50.Tt Inference methods – 89.75.-k Complex systems

1 Introduction

The distribution of a discrete random variable is referred
to as a distribution with a power-law tail if it falls as

p(k) ∼ k−γ (1)

for k ∈ N and k ≥ kmin. Power-laws are ubiquitous distri-
butions that can be found in many systems from different
disciplines, see [1,2] and references therein for some exam-
ples.

Experimental data of quantities that follow a power-
law are usually very noisy; and therefore obtaining reliable
estimates for the exponent γ is notoriously difficult. Esti-
mates that are based on graphical methods are certainly
used most often in practice. But simple graphical meth-
ods are intrinsically unreliable and not able to establish a
reliable estimate of the exponent γ.

For that reason, the authors of [3] introduced an alter-
native approach based on a maximum likelihood estima-
tor for the exponent γ. Unfortunately the authors concen-
trate on a rather idealized type of power-law distributions,
namely

p1(k; γ) =
k−γ

ζ(γ, 1)
(2)

with k ∈ N, where the normalization constant ζ(γ, 1) is
given by the Hurwitz-ζ-function which is defined for γ > 1
and a > 0 by

ζ(γ, a) =
∞∑

i=0

1
(i + a)γ

. (3)

The distribution (2) is characterized by one parameter
only, and therefore all properties of this distribution (e.g.
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its mean) are determined solely by the exponent γ. In
many applications the power-law (2) is too restrictive.

If one states that a quantity follows a power-law, then
this means usually that the tail (k ≥ kmin) of the distri-
bution p(k) falls proportionally to k−γ . Probabilities p(k)
for k < kmin may differ from the power-law and admit
the possibility to tune the mean or other characteristics
independently of γ. In some situations probabilities p(k)
may differ from a power-law for k ≥ kmax as well, e.g. the
distribution may have an exponential cut-off.

Therefore, I will generalize the maximum likelihood
approach introduced in [3] to distributions that follow a
power-law within a certain range kmin ≤ k < kmax but
differ from a power-law outside this range in an arbitrary
way. Furthermore, I will give some statements about the
large sample properties of the estimate of the power-law
exponent and present a numerical procedure to identify
the power-law regime of the distribution p(k). But first,
let us see what is wrong with popular graphical methods.

2 Trouble with graphical methods

All graphical methods for estimating power-law exponents
are based on a linear least squares fit of some empirical
data points (x1, y1), (x2, y2),. . . , (xM , yM ) to the function

y(x) = a0 + a1x. (4)

The linear least squares fit minimizes the residual

∆ =
M∑

i=1

(yi − a0 − a1xi)2. (5)
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Estimates â0 and â1 of the parameters a0 and a1 are given
by [4]

â0 =

(∑M
i=1 yi

)(∑M
i=1 x2

i

)
−
(∑M

i=1 xi

)(∑M
i=1 yixi

)

M
(∑M

i=1 x2
i

)
−
(∑M

i=1 xi

)2

(6)

and

â1 =
M
(∑M

i=1 yixi

)
−
(∑M

i=1 xi

)(∑M
i=1 yi

)

M
(∑M

i=1 x2
i

)
−
(∑M

i=1 xi

)2 . (7)

The ansatz for the residual (5) and derivation of (6) and (7)
are based on several assumptions regarding the data points
(xi, yi). It is assumed that there are no statistical uncer-
tainties in xi, but yi may contain some statistical error.
The errors in different yi are independent identically dis-
tributed random variables with mean zero. In particular
the standard deviation of the error is independent of xi.
For various graphical methods for the estimation of the
exponent of a power-law distribution these conditions are
not met, leading to the poor performance of these meth-
ods.

To illustrate the failure of graphical methods by a com-
puter experiment N = 10 000 random numbers mi had
been drawn from distribution (2) with γ = 2.5 and an
estimate γ̂ for the exponent γ was determined by various
graphical methods. The estimator is a random variable
and its distribution depends on the method that has been
used to obtain the estimate. Important measures of the
quality of an estimator are its mean and its standard de-
viation. If the mean of the estimator equals the true expo-
nent γ then the estimator is unbiased and estimators with
a distribution that is concentrated around γ are desirable.
For each graphical method a histogram of the distribu-
tion of the estimator was calculated to rate the quality
of the estimator by repeating the numerical experiment
500 times.

The most straight forward (and most unreliable) gra-
phical approach is based on a plot of the empirical proba-
bility distribution p̂(k) on a double-logarithmic scale. In-
troducing the indicator function I [·], which is one if the
statement in the brackets is true and else zero, the empir-
ical probability distribution is given by

p̂(k) =
1
N

N∑

i=1

I [mi = k] . (8)

An estimate γ̂ for the power-law exponent γ is established
by a least squares fit to

(xi, yi) = (ln k, ln p̂(k)) for all k ∈ N with p̂(k) > 0,
(9)

γ̂ equals the estimate (7) for the slope, see Figure 1a.
Because the lack of data points in the tail of the empirical
distribution this procedure underestimates systematically
the exponent γ, see Table 1.

There are two ways to deal with the sparseness in the
tail of the empirical distribution, logarithmic binning and
considering the empirical cumulative distribution P̂ (k) in-
stead of p̂(k). The cumulative probability distribution of (2)
is defined by

P (k) =
∞∑

i=k

i−γ

ζ(γ, 1)
. (10)

If p(k) has a power-law tail with exponent γ then P (k)
follows approximately a power-law with exponent γ − 1
because for k � 1 the distribution P (k) can be approxi-
mated by

P (k) ≈
∫ ∞

k

i−γ

ζ(γ, 1)
di =

k1−γ

(γ − 1)ζ(γ, 1)
. (11)

The empirical cumulative probability distribution is given by

P̂ (k) =
1
N

N∑

i=1

I [mi ≥ k] . (12)

It is less sensitive to the noise in the tail of the distribution
and therefore a fit of

(xi, yi) = (ln k, ln P̂ (k)) for all k ∈ N with P̂ (k) > 0
(13)

to a straight line gives much better estimates for the ex-
ponent, see Figure 1b. But there is still a small bias to too
small values and the distribution of this estimate is rather
broad, see Table 1.

Logarithmic binning reduces the noise in the tail of the
empirical distributions p̂(k) and P̂ (k) by merging data
points into groups. By introducing the logarithmically
scaled boundaries

bi = round ci with some c > 1 (14)

(The function roundx rounds x to the nearest integer.) a
linear least squares fit is performed to

(xi, yi) =

⎛

⎝ln
bi + bi+1 − 1

2
, ln

bi+1−1∑

k=bi

p̂(k)
bi+1 − bi

⎞

⎠ (15)

or

(xi, yi) =

⎛

⎝ln
bi + bi+1 − 1

2
, ln

bi+1−1∑

k=bi

P̂ (k)
bi+1 − bi

⎞

⎠ , (16)

respectively. As a consequence of the binning the width
of the distribution of the estimate γ̂ of the power-law
exponent γ is reduced, see Figures 1c, 1d and Table 1.
According to the numerical experiments a fit of the loga-
rithmically binned cumulative distribution gives the best
results among graphical methods. It shows the smallest
systematic bias.

All the methods that have been considered so far have
a common weakness. In the deviation of (6) and (7) it was
assumed that the standard deviation of the distribution of
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Fig. 1. Comparison of various methods for estimating the exponent of a power-law. Each figure shows data for a single data set
of N = 10 000 samples drawn from distribution (2) with γ = 2.5. Insets present histograms of estimates for γ for 500 different
data sets.

the error in yi is the same for all data points (xi, yi). But
this is obviously not the case. For fixed k the empirical dis-
tribution p̂(k) is a random variable with mean p1(k; γ) and
standard deviation

√
p1(k; γ)(1 − p1(k; γ))/N . For the cor-

responding data on a logarithmic scale the standard devi-
ation is approximately given by the quotient

√
p1(k; γ)(1 − p1(k; γ))/N

p1(k; γ)
=

√
1 − p1(k; γ)
Np1(k; γ)

. (17)

A power-law distribution p1(k; γ) is a monotonically de-
creasing function and therefore (17) is an increasing func-
tion of k. Because the variation of the statistical error is
not taken into account, the distribution of the estimate γ̂
is very broad.

Methods that deal with the cumulative distribution
have an additional weakness. Cumulation has the side-
effect that the statistical errors in yi are not independent
any more, which violates another assumption of the devi-
ation of (6) and (7).

To sum up, estimates of exponents of power-law distri-
butions based on a linear least squares fit are intrinsically
inaccurate and lack a sound mathematical justification.

3 Maximum likelihood estimators

Maximum likelihood estimators offer a solid alternative
to graphical methods. Let p(k; θ) denote a single parame-
ter probability distribution. The maximum likelihood es-
timator θ̂N for the unknown parameter based on a sample
m1, m2, . . . , mN of size N is given by

θ̂N = argmax
θ

[L(θ)] = argmax
θ

[lnL(θ)] , (18)

where

L(θ) =
N∏

i=1

p(mi; θ) (19)
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Table 1. Mean and standard deviation of the distribution of
the estimate for the power-law exponent γ for various methods.
All methods have been applied to the same data sets of random
numbers from distribution (2) with γ = 2.5. See text for details.

mean standard deviation
method estimate of estimate

fit on empirical distribution 1.597 0.167

fit on cumulative empirical
distribution

2.395 0.304

fit on empirical distribution
with logarithmic binninga

2.397 0.080

fit on cumulative empirical
distribution with logarithmic
binning

2.544 0.127

maximum likelihood 2.500 0.016

a In [3] a similar experiment is reported. For a fit of the
logarithmically binned empirical probability distribution the
authors find a systematical bias of 29%. I cannot reconstruct
such a strong bias, instead I get a bias of 5% only. Probably the
quality of this method depends on the details of the binning
procedure.

denotes the likelihood function. In the limit of asymptot-
ically large samples and under some regularity conditions
maximum likelihood estimators share some desirable fea-
tures [5,6].

– The estimator θ̂N exists and is unique.
– The estimator θ̂N is consistent, that means for every

ε > 0
lim

N→∞
P

[
|θ̂N − θ| < ε

]
= 1 , (20)

where P

[
|θ̂N − θ| < ε

]
denotes the probability that

the difference |θ̂N − θ| is less than ε.
– The estimator θ̂N is asymptotically normal with mean θ

and variance

(∆θ̂N )2 .=

(
N E

[(
d
dθ

ln p(k; θ)
)2
])−1

, (21)

where E [·] indicates the expectation value of the quan-
tity in the brackets.

– Maximum likelihood estimators have asymptotically
minimal variance among all asymptotically unbiased
estimators. One says, they are asymptotically efficient.

4 Maximum likelihood estimators
for genuine power-laws

The most general discrete genuine power-law distribution
has a lower as well as an upper bound and is given by

pkmin,kmax(k; γ) =
k−γ

ζ(γ, kmin, kmax)
(22)

for k ∈ N with kmin ≤ k < kmax. Where the non-standard
notation

ζ(γ, kmin, kmax)ζ(γ, kmin) − ζ(γ, kmax) (23)

has been introduced. If the upper bound is missing the
distribution

pkmin(k; γ) =
k−γ

ζ(γ, kmin)
(24)

has to be considered for k ∈ N with k ≥ kmin. The distri-
butions (22) and (24) are generalizations of (2) and will be
useful for the analysis of more general distributions that
show a power-law behavior only in a certain range but
have an arbitrary profile outside the power-law regime.
This kind of distributions will be considered in Section 5.

The maximum likelihood estimator γ̂N for the param-
eter γ of the distribution (22) follows from (18) and is
given by

γ̂N = argmax
γ

[
−γ

(
N∑

i=1

ln mi

)
− N ln ζ(γ, kmin, kmax)

]

(25)
or equivalently by the implicit equation

ζ′(γ̂N , kmin, kmax)
ζ(γ̂N , kmin, kmax)

+
1
N

N∑

i=1

ln mi = 0 , (26)

which has to be solved numerically. The prime denotes the
derivative with respect to γ. The asymptotic variance of
this estimator γ̂N follows from (21) and equals

(∆γ̂N )2 .=
1
N

× ζ(γ, kmin, kmax)2

ζ′′(γ, kmin, kmax)ζ(γ, kmin, kmax) − ζ′(γ, kmin, kmax)2
.

(27)

In the limit kmax → ∞ equations (25), (26), and (27)
give the maximum likelihood estimator and the asymp-
totic variance of this estimator for power-law distributions
lacking an upper cut-off (24). A graphical representation
of the standard deviation (27) in the limit kmax → ∞
is given in Figure 2. For each fixed kmin the quantity
∆γ̂N

√
N grows faster than linear with γ. Therefore the

larger the exponent γ the larger the sample size that is
necessary to get an estimate within a given error bound.

If the maximum likelihood method is applied (assum-
ing a distribution (24)) to the same data as in Section 2,
numerical experiments show that the estimates for the ex-
ponent are much more precise. The estimate has no identi-
fiable systematic bias, the standard deviation of the distri-
bution of the estimate is smaller by an order of magnitude
compared to graphical methods, see Table 1 and Figure 3.

5 Maximum likelihood method for general
power-law distributions

The maximum likelihood procedure outlined in Section 4
can be generalized further to distributions p(k) that are no
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Fig. 2. Asymptotic standard deviation for maximum like-
lihood estimators for the exponent of a power-law distribu-
tion (24).

Fig. 3. Empirical distribution of the maximum likelihood es-
timator (histogram) versus its theoretical asymptotic distribu-
tion, which is given by a normal distribution with mean γ = 2.5
and variance (27). The histogram has been obtained from the
same data as in Figure 1.

pure power-laws (22) or (24) but follow a power-law within
a certain finite range or follow a power-law in the whole
tail of the distribution and have an arbitrary profile out-
side the power-law regime. The popurse of this section is
to establish methods for identifying the power-law regime
and for estimating the exponent of the power-law regime
without making special assumptions about the profile of
the probability distribution beyond the power-law regime.

The main problem for a generalization of the maxi-
mum likelihood approach is that there might be no good
hypothesis for the profile of the probability distribution
beyond the power-law regime. To overcome this difficulty
the empirical data set is restricted to a window kc min ≤
mi < kc max. (The following discussion covers the case of
a power-law tail distributions as well by setting kc max =
∞.) Assuming that p(k) has a power-law profile for kc min ≤

k < kc max then the probability distribution of the re-
stricted data set is given by (22) with kmin = kc min and
kmax = kc max (or by (24) with kmin = kc min) and some un-
known exponent γ. This allows to estimate the power-law
exponent by the application of the maximum likelihood
method on the restricted data set of size N ′ as presented
in Section 4 without making a hypothesis about the pro-
file of the probability distribution beyond the power-law
regime.

In order to apply the maximum likelihood method one
has to determine the cut-off points kc min and kc max first.
Here it has to be taken into account that if the window
kc min ≤ mi < kc max is chosen too large the estimate
γ̂ is systematically biased, but on the other hand if it
is too small the statistical error is larger than necessary.
In some cases one can make conservative estimates for
kc min and kc max by plotting the empirical probability dis-
tribution (8) on a double-logarithmic scale. An appropri-
ate window can also be found by determining estimates
γ̂N ′(kc min) as a function of the window and a χ2-test.

Assuming the empirical data is drawn from a distri-
bution with a power-law tail (no upper cut-off) the lower
cut-off point kc min can be determined in the following sys-
tematic way. By varying the parameter kc min the maxi-
mum likelihood approach gives a sequence of estimates
γ̂N ′(kc min). If kc min is very large the estimate will be quite
inaccurate because only a tiny fraction of the experimen-
tal data is taken into account; but the smaller the cut-off
kc min the more accurate the estimate of the exponent. If
kc min approaches the point from above (but is still above)
where the probability distribution starts do differ from
a power-law γ̂N ′(kc min) will give a very precise estimate
for the exponent γ. On the other hand, if kc min is too
small the hypothesis that the (restricted) empirical data
is drawn from a power-law distribution is violated which
causes a significant change of the estimate of the power-
law exponent.

If the empirical data is drawn from a distribution hav-
ing both a lower crossover point as well as an upper cross-
over point a sequence of estimates γ̂N ′(kc min) is deter-
mined by restricting the data to a sliding window kc min ≤
mi < wkc min = kc max with w > 1. As long as the window
lies completely within the power-law regime the maximum
likelihood estimate obtained from the restricted data set
will give a reliable estimate of the power-law exponent.
If the window lies at least partly outside the power-law
regime the estimate is systematically biased.

To illustrate the procedures outlined above I generated
two data sets from two distributions having a power-law
regime. The first data set of N = 10 000 samples was
drawn from a distribution with a power-law tail which is
given by

p(k) ∼
{

5−2.5 for 1 ≤ k ≤ 5
k−2.5 for k > 5.

(28)

Plotting the sequence of estimates γ̂N ′(kc min) against the
parameter kc min reveals the exponent γ = 2.5 as wells as
the crossover point k = 5 very clearly, see Figure 4. The
second data set of N = 100 000 samples was drawn from
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Fig. 4. Sequence of estimates γ̂N′(kc min) as a function of the
cut-off kc min for a data set of N = 10 000 samples from dis-
tribution (28). Filled symbols mark where the χ2-test has re-
jected the hypothesis that the restricted data follows a power-
law (24) with exponent γ = γ̂N′(kc min). An error probability
of α = 0.001 was chosen.

a distribution with two crossover points, viz.

p(k) ∼

⎧
⎪⎨

⎪⎩

5−2.25 for 1 ≤ k ≤ 5
k−2.25 for 5 ≤ k ≤ 100
100−2.25e−0.05(k−100) for k > 100.

(29)

Figure 5 shows the sequence of estimates γ̂N ′(kc min) that
had been determined from restricted data sets of samples
within the sliding window kc min ≤ mi < 5kc min. This se-
quence exhibits a broad plateau that corresponds to the
power-law exponent γ = 2.25. If the window does not
lie completely inside the power-law regime the estimate
γ̂N ′(kc min) deviates systematically from the known expo-
nent.

Apart from a visual inspection of the γ̂N ′(kc min) plot
the crossover point(s) to the power-law regime can be de-
termined by means of a χ2-test. To apply a χ2-test the
data set has to be divided into some bins and the fol-
lowing binning turned out to be appropriate: The data is
partitioned into a small number b, say b = 6, of bins. In
the case of a distribution with a power-law tail this means
each bin j collects nj items such that

n1 = N ′p̂(kc min) q1 = pkc min(kc min; γ̂N ′(kc min))

(30)

n2 = N ′p̂(kc min + 1) q2 = pkc min(kc min + 1; γ̂N ′(kc min))
(31)

...
...

and finally

nb = N ′
∞∑

k=kc min+b−1

p̂(k) qb =
∞∑

k=kc min+b−1

pkc min(k; γ̂N ′(kc min)) ,

(32)
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Fig. 5. Sequence of estimates γ̂N′(kc min) as a function of the
lower cut-off kc min for a data set of N = 100 000 samples from
distribution (29). Filled symbols mark where the χ2-test has re-
jected the hypothesis that the restricted data follows a power-
law (22) with exponent γ = γ̂N′(kcmin). An error probability
of α = 0.001 and the window width w = 5 had been chosen.

where qj denotes the probability that a data point falls
into bin j under the assumption that the (restricted) data
follows the power-law (24) with kmin = kc min and the
exponent γ = γ̂N ′(kc min). For distributions with a finite
power-law regime the binning procedure can be carried out
in a similar way. In this case the summation index in (32) is
bounded by kc min +b−1 ≤ k < kc max and the probability
pkcmin,kcmax(k; γ̂N ′(kc min)) has to be considered instead of
pkcmin(k; γ̂N ′(kc min)).

The test statistic of the χ2-test is given by

c2 =
b∑

j=1

(nj − N ′qj)2

N ′qj
. (33)

If the to kc min ≤ mi < kc max restricted data is given by
the power-law (22) or (24) with kmin = kc min, kmax =
kc max, and the exponent γ = γ̂N ′(kc min) then the statis-
tic c2 follows asymptotically a χ2-distribution with ν =
(b − 1) degrees of freedom, which is given by

pχ2(x, ν) =
xν/2−1e−x/2

2−ν/2 Γ(ν/2)
. (34)

Let χ2
α be the (1 − α)-quantile of the distribution (34).

The hypothesis that the restricted data is given by the
power-law (22) or (24), respectively, with kmin = kc min,
kmax = kc max, and the exponent γ = γ̂N ′(kc min) is ac-
cepted with the error probability α if c2 ≤ χ2

α. If the
window kc min ≤ mi < kc max lies not completely within
the power-law regime this hypothesis will be rejected by
the χ2-test and one can detect the upper crossover point
as well as the lower crossover point (where the power-law
loses its validity) in a reliable way, see Figures 4 and 5.
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6 Computational remarks

The normalizing factors of the probability distributions (22)
and (24) are given by the Hurwitz-ζ-function. This func-
tion is less common than other special functions and may
not be available in the reader’s favorite statistical software
package but the GNU Scientific Library [7] offers an open
source implementation of this function. A direct calcula-
tion of the Hurwitz-ζ-function by truncating the sum (3)
gives unsatisfactory results.

The maximum likelihood estimator of the exponent
can be computed numerically either by solving (25) or (26).
Equation (25) has the advantage that it can be solved
without calculating derivatives of the Hurwitz-ζ-fun-
ction [8], whereas the solution of (26) involves its first
derivative (e.g. bisection method) or even higher deriva-
tives (e.g. Newton-Raphson method). An explicit imple-
mentation of these derivatives is often not available but
may be calculated numerically.

7 Conclusion

Methods based on a least squares fit are not suited to es-
tablish estimates for power-law distribution exponents be-
cause least squares fits rely on assumptions about the data
set that are not fulfilled by empirical data from power-
law distributions. In this paper maximum likelihood esti-
mators have been introduced as a reliable alternative to
graphical methods. These estimators are asymptotically
efficient and can be applied to data from a wide class
of distributions having a power-law regime. The crossover
points that separate the power-law regime from the rest of
the distribution can be determined by a procedure based
on a χ2-test.

Finally I would like to mention that the idea to plot
a sequence of estimates γ̂N ′(kc min) as shown in Figure 4
is related to so-called Hill plots [9,10]. The Hill estimator
is a maximum likelihood estimator for the inverse of the
exponent of the continuous Pareto distribution p(k) =
(γ − 1)(k/kmin)−γ/kmin, see [10] for a detailed discussion.

Work sponsored by the European Community’s FP6 Infor-
mation Society Technologies programme under contract IST-
001935, EVERGROW.
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